Common Spectral Properties of Linear Operators a and B Such That Aba = a 2 and Bab = B 2

نویسندگان

  • Christoph Schmoeger
  • Stevan Pilipović
چکیده

Let A and B be bounded linear operators on a Banach space such that ABA = A2 and BAB = B2. Then A and B have some spectral properties in common. This situation is studied in the present paper. 1. Terminology and motivation Throughout this paper X denotes a complex Banach space and L(X) the Banach algebra of all bounded linear operators on X. For A ∈ L(X), let N(A) denote the null space of A, and let A(X) denote the range of A. We use σ(A), σp(A), σap(A), σr(A), σc(A) and ρ(A) to denote spectrum, the point spectrum, the approximate point spectrum, the residual spectrum, the continuous spectrum and the resolvent set of A, respectively. An operator A ∈ L(X) is semi-Fredholm if A(X) is closed and either α(A) := dimN(A) or β(A) := codimA(X) is finite. A ∈ L(X) is Fredolm if A is semiFredholm, α(A) < ∞ and β(A) < ∞. The Fredholm spectrum σF (A) of A is given by σF (A) = {λ ∈ C : λI −A is not Fredholm}. The dual space of X is denoted by X∗ and the adjoint of A ∈ L(X) by A∗. The following theorem motivates our investigation: Theorem 1.1. Let P,Q ∈ L(X) such that P 2 = P and Q = Q. If A = PQ and B = QP , then (1) ABA = A and BAB = B; (2) σ(A) {0} = σ(B) {0}; (3) σp(A) {0} = σp(B) {0}; (4) σap(A) {0} = σap(B) {0}; 2000 Mathematics Subject Classification: Primary 47A10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Achievable Ranks of Intersections of Finitely Generated Free Groups

We answer a question due to A. Myasnikov by proving that all expected ranks occur as the ranks of intersections of finitely generated subgroups of free groups. Mathematics Subject Classification (2000): 20E05 Let F be a free group. Let H and K be nontrivial finitely generated subgroups of F . It is a theorem of Howson [1] that H ∩K has finite rank. H. Neumann proved in [2] that rank(H ∩K)− 1 ≤ ...

متن کامل

Lie higher derivations on $B(X)$

Let $X$ be a Banach space of $dim X > 2$ and $B(X)$ be the space of bounded linear operators on X. If $L : B(X)to B(X)$ be a Lie higher derivation on $B(X)$, then there exists an additive higher derivation $D$ and a linear map $tau : B(X)to FI$ vanishing at commutators $[A, B]$ for all $A, Bin B(X)$ such that $L = D + tau$.

متن کامل

Some properties of b-weakly compact operators on Banach lattices

In this paper we give some necessary and sufficient conditions for which each Banach lattice  is    space and we study some properties of b-weakly compact operators from a Banach lattice  into a Banach space . We show that every weakly compact operator from a Banach lattice  into a Banach space  is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...

متن کامل

A Certain Class of Character Module Homomorphisms on Normed Algebras

For two normed algebras $A$ and $B$ with the character space   $bigtriangleup(B)neq emptyset$  and a left $B-$module $X,$  a certain class of bounded linear maps from $A$ into $X$ is introduced. We set $CMH_B(A, X)$  as the set of all non-zero $B-$character module homomorphisms from $A$ into $X$. In the case where $bigtriangleup(B)=lbrace varphirbrace$ then $CMH_B(A, X)bigcup lbrace 0rbrace$ is...

متن کامل

Some properties of continuous linear operators in topological vector PN-spaces

The notion of a probabilistic metric  space  corresponds to thesituations when we do not know exactly the  distance.  Probabilistic Metric space was  introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of  probabilistic normed space based on the definition of Menger [1]. In this note we study the PN spaces which are  topological vector spaces and the open mapping an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006